

OPERATING PRINCIPLE

— PS* are piston type, hydro-electrical pressure switches.

The internal electrical contact is switched when the operating pressure reaches the set value.

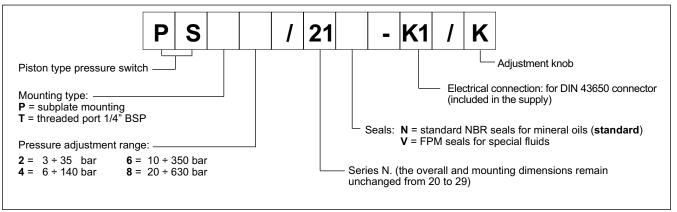
- The line pressure acts on piston (1) which is directly loaded by a spring (2) on the opposite side. The spring load is adjustable by means of the knob (3). When the line pressure reaches the set valve, the piston (1) moves and switches the micro-contact (4).
- The pressure switches are available in four pressure ranges, from 35 up to 630 bar, and they can be subplate mounting or 1/4" BSP threaded port type.
- Standard supply is with adjustment knob and with pressure scale.

PRESSURE SWITCH		PS*2	PS*4	PS*6	PS*8				
Pressure adjustment range	bar	bar 3 ÷ 35		10 ÷ 350	20 ÷ 630				
Max operating pressure	bar	350	350	650	650				
Hysteresis	see par.	. 5	SYMBOL	S	•				
Repeatability	< ± 1 % of set	pressure							
Electrical characteristics	see par	F							
Ambient temperature range	°C	-20 / +50		SYMBOL 2					
Fluid temperature range	°C	-20 / +80			* _P				
Fluid viscosity range	cSt	10 ÷ 400		0					
Recommended viscosity	cSt	25		2 3	CONNECTION				
Fluid contamination degree	according to ISO 4406:1	999 class 20/18/15			SCHEME				
Mass	kg	0,67		1					

TECHNICAL CHARACTERISTICS

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Киров (8332)68-02-04 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (862)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47


Россия (495)268-04-70

https://duplomatic.nt-rt.ru/ || dcw@nt-rt.ru

p max 650 bar max adjustable p 35 - 140 - 350 - 630 bar

Казахстан (772)734-952-31

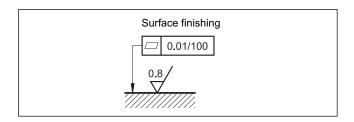
2 - HYDRAULIC FLUIDS

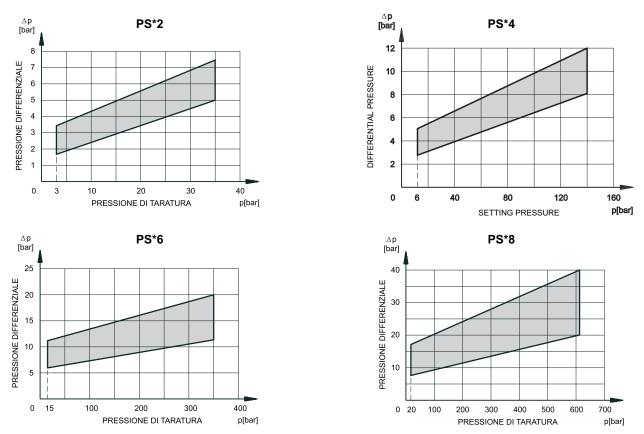
Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V).

For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.

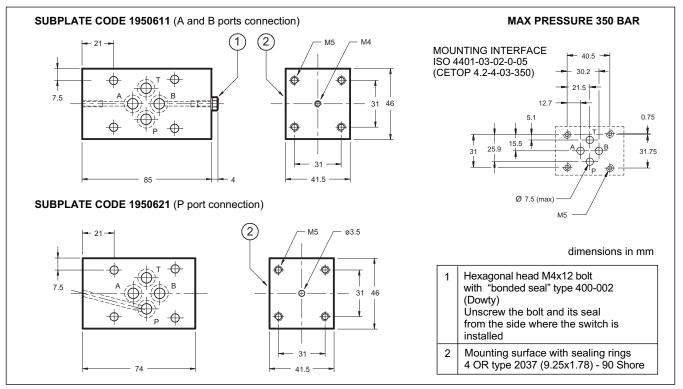

3 - ELECTRICAL CHARACTERISTICS

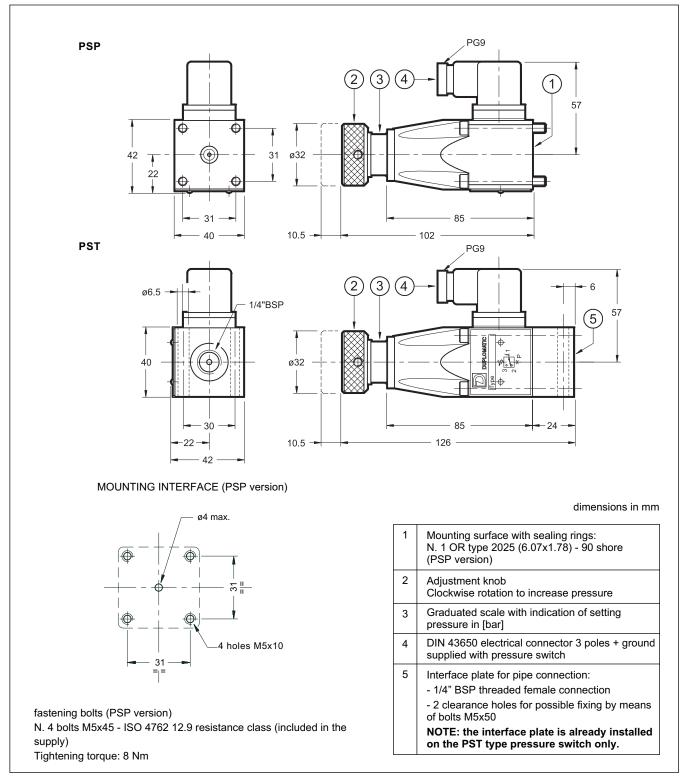

		А	D	DC	
Power supply	V	125	250	30	250
Max load on contacts - resistive - inductive	A	7 4	5 2	5 3	0,2 0,02
Electrical insulation (according to CEI EN 60204)		> 1 M Ω at 500 Vdc			
Max switching rate	switches/min	120			
Protection class (according to CEI EN 60529)		IP 65			

4 - INSTALLATION

The pressure switches can be installed in any position without impairing its correct operation. Ensure that there is no air in the hydraulic circuit.

The subplate mounting pressure switch PSP type is fixed by means of screws on a flat surface with planarity and roughness values equal to or better than those indicated in the relative symbols. If the minimum values are not observed, the fluid can easily leak between the valve and the mounting surface.




5 - HYSTERESIS CHARACTERISTICS (values measured with viscosity of 36 cSt at 50°C)

6 - SUBPLATES FOR STACK MOUNTING

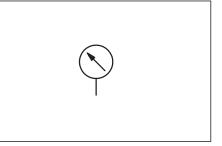
The PSP pressure switches can be stack mounted by means of ISO 4401-03 (CETOP 03 subplates), code 1950611 and 1950621. The subplate code 1950611 permits the connection between the pressure switch and A and/or B ports, depending on where the bolt (1) is installed. The subplate code 1950621 permits the connection between the pressure switch and the P port.

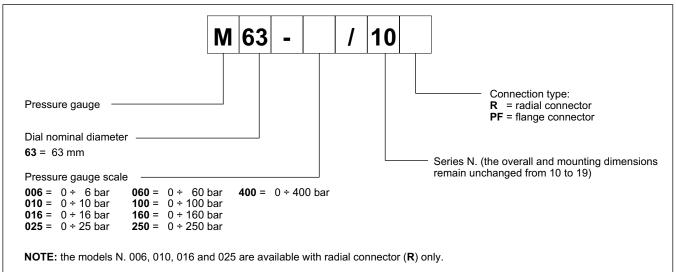
7 - OVERALL AND MOUNTING DIMENSIONS

91 000/112 ED

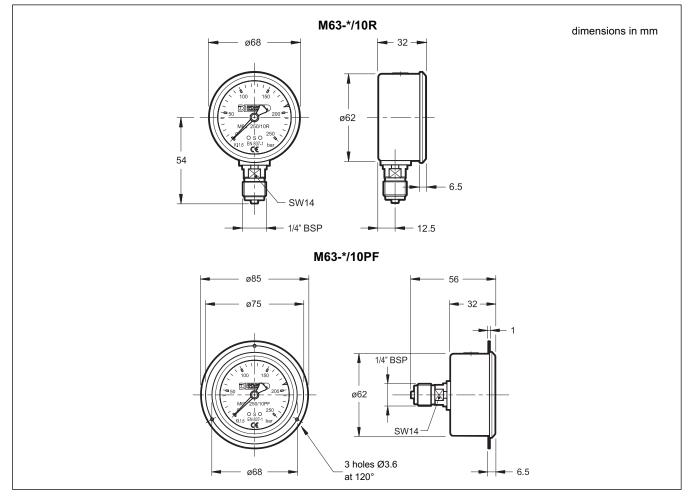
TECHNICAL CHARACTERISTICS

Nominal diameter	mm	63		
Nominal pressure	bar	$\begin{array}{cccc} 0 \div 6 & 0 \div 10 & 0 \div 16 \\ 0 \div 25 & 0 \div 60 & 0 \div 100 \\ 0 \div 160 & 0 \div 250 & 0 \div 400 \end{array}$		
Static pressure	3	3/4 of the end scale value		
Dynamic pressure	2	2/3 of the end scale value		
Limit pressure	end	scale value for short period		
Precision class according to EN 837-1/6		1.6		
Thermal drift	± 0,4	% / 10K in the measure range		
Protection class according to EN 60529 - IEC 529	IP 65			
Ports according to EN 837-1/6	1/4" BSP			
Ports material	copper alloy			
Sensible element: 0 ÷ 6, 0 ÷ 10, 0 ÷ 16, 0 ÷ 25, 0 ÷ 60.	copper alloy, type-C, braze welding spring			
0 ÷ 100, 0 ÷ 160, 0 ÷ 250, 0 ÷ 400.	copper alloy, helical, braze welding spring			
Movements		copper alloy		
Dial	white	plastic with lock pins in black plastic		
Case		ess steel with natural finishing, OR between case and shank		
Display		transparent plastic		
Filling liquid	glyce	erin 85% + distilled water 15%		
CE Marking	in compliance with 97/23/CE of 29.05.97 art. 3 par. 3			
Working temperature range	°C	-20 / +60		
	kg	0,24		

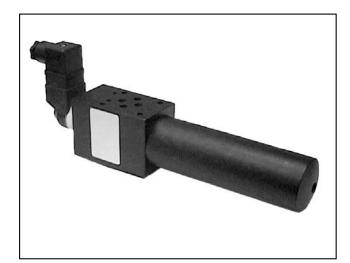

M63 PRESSURE GAUGE


SERIES 10

according to EN 837-1


DESCRIPTION

- The pressure gauges M63 are pressure indicators used on hydraulic systems.
- They guarantee a correct pressure measurement also with pulsations and vibrations.
- They are available in 9 different pressure scales and with 2 connection types for mounting with radial port or rear port with flange connector.
- The case is made of stainless steel and the connection is made of copper alloy.
- The filling in liquid is made of 85% glycerin and 15% distilled water.
- As they are realised in compliance with 97/23/CE of the 29-05-97 art. 3 par. 3, only the ones with the end scale of 250 and 400 bar have the marking CE on the dial.
- The construction and the realisation have been done according to EN 837-1.



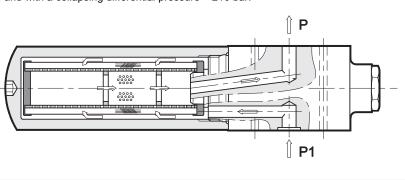
2 - OVERALL AND MOUNTING DIMENSIONS

95 230/111 ED

FPHM PRESSURE FILTER SERIES 10

MODULAR VERSION

p max 320 barQ max (see table of performances)

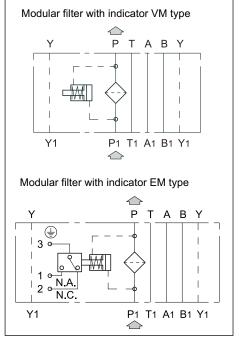

OPERATING PRINCIPLE

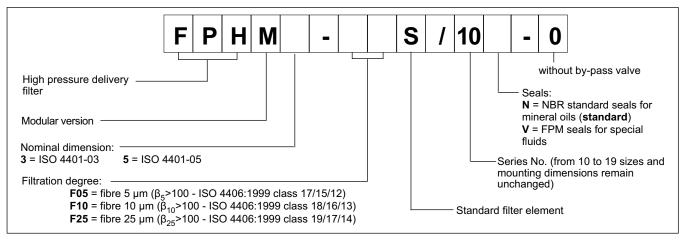
- The FPHM filters are designed for the modular mounting directly under proportional valves or servovalves with ISO 4401 (CETOP RP 121H) interfaces.
- They are available in two nominal dimensions with ISO 4401-03 (CETOP 03) e ISO 4401-05 (CETOP 05) mounting surface.
- FPHM filters are designed for working pressures up to 320 bar. The filter elements are made of high efficiency filtering materials and are available with three different filtration degrees and with a collapsing differential pressure = 210 bar:

F05 = 5 μ m absolute (β_{s} >100 - ISO 4406:1999 class 17/15/12) F10 = 10 μ m absolute (β_{10} >100 - ISO 4406:1999 class 18/16/13) F25 = 25 μ m absolute

(B₂₅>100 - ISO 4406:1999 class 19/17/14)

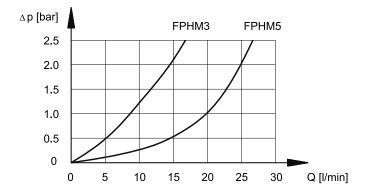
 All the FPHM filters are supplied without bypass valve and are designed to incorporate a visual-differential or a visual-electric clogging indicator to be ordered separately (see paragraph 5).

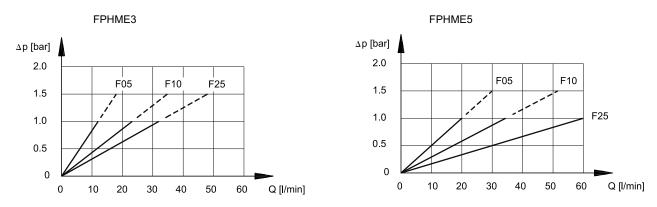

PERFORMANCES


Filter	Dimensions	Mass [Kg]	Rated flow (indicative) [l/min]			
			F05	F10	F25	
FPHM3	ISO 4401-03	2,5	12	13,5	16	
FPHM5	ISO 4401-05	4,2	22	25	28	

NOTE 1: The flow rates stated in the table correspond to a 3 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C.

As for a different viscosity range, see NOTE 2 - par. 2.2.


Maximum operating pressure	bar	320
Collapsing differential pressure of the filter element	bar	210
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400



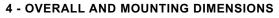
2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

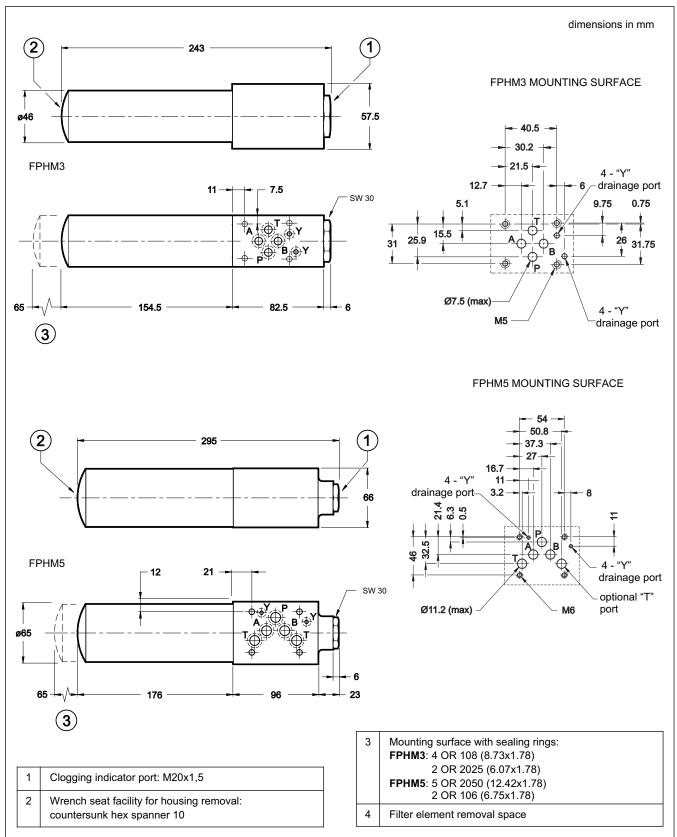
2.1 - Pressure drops through the filter body

2.2 - Pressure drops through FPHME filter element

NOTE 2: The filter size has to be selected so that with the nominal flow rate the pressure drop is lower than 0.8 bar.

The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element. As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:

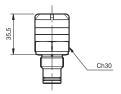

total Δpl value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)


real Δp value of the filter element = value obtainable through the diagrams in par. 2.2

Such ratio is valid for a viscosity value up to 200 cSt. For a higher viscosity please consult our technical department.

3 - HYDRAULIC FLUIDS

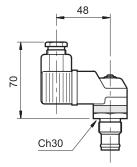
Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.



5 - CLOGGING INDICATORS

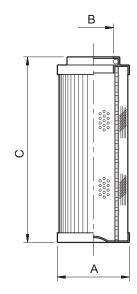
The filters are all designed to incorporate clogging indicators, which have to be ordered separately.

5.1 - Visual indicator for modular filters Identification code: VM/10



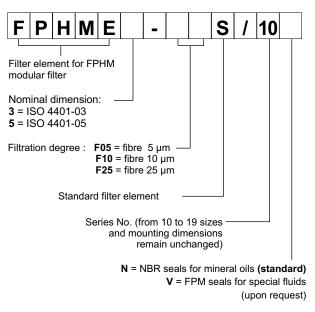
This indicator measures the differential pressure between the filter input and output.

The indicator is supplied with coloured bands, which informs you about the clogging condition of the filter element:


WHITE: efficient filter element $\Delta p < 8$ bar (± 10%) RED: the filter element has to be replaced $\Delta p > 8$ bar (± 10%)

5.2 - Electric-visual indicator for modular filters Identification code: EM/10

This indicator, apart from giving a visual indication, for example the VPM model, operates by switching an electric contact when the filter element has reached the clogging limit.


The contact can be wired in an open or closed condition (see the hydraulic symbol).

6 - FILTER ELEMENTS

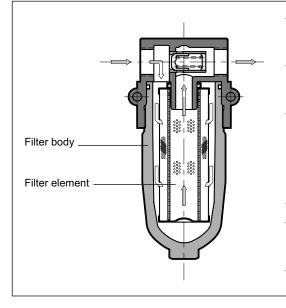
filter element code	ØA	ØB	С	Average filtering surface [cm ²]
FPHME3	33	16	100	270
FPHME5	45	25	115	475

FILTER ELEMENTS IDENTIFICATION CODE

TECHNICAL SPECIFICATIONS

Differential operating pressure	bar	8				
AC power supply						
Max. operating voltage	VAC	250 50/60 Hz				
Max. load on the contacts (inductive or resistive)	А	5				
DC power supply						
Max. operating voltage	VDC	125				
Max. load on the contacts (with V at 30-50-75-125 VDC) resistive inductive	A	2 - 0,5 - 0,25 - 0,2 2 - 0,5 - 0,25 - 0,03				
Electric connector		DIN 43650				
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65					

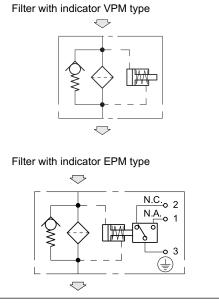
95 220/112 ED

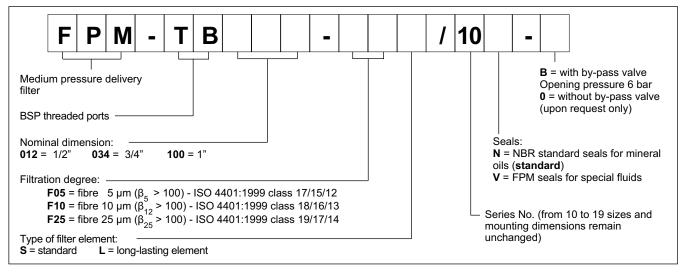


FPM MEDIUM PRESSURE FILTER FOR LINE MOUNTING SERIES 10

p max 210 barQ max (see table of performances)

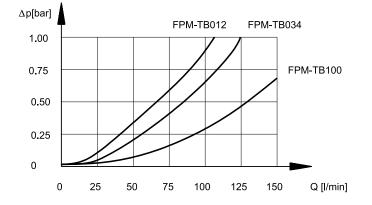
OPERATING PRINCIPLE

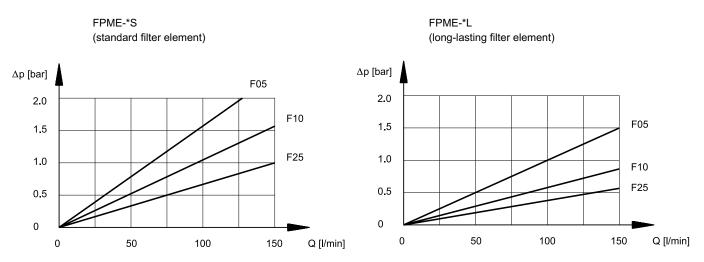

- The FPM filters are designed to be line-mounted with BSP threaded ports for hydraulic connections. Threaded holes are machined on the head for possible filter bracket fixing.
- The replacement of the filter element can be easily carried out by using a normal hexagon spanner to unscrew the bowl of the filter, which has a suitably shaped end.
- FPM filters are designed to be installed on medium pressure lines up to 210 bar; the filter elements are made of high efficiency filtering materials and are available with three different filtration degrees:
 - F05 = 5 μ m absolute (β_5 >100 ISO 4401:1999 class 17/15/12)
 - F10 = 10 µm absolute (β_{10} >100 ISO 4401:1999 class 18/16/13)
 - F25 = 25 μ m absolute (β_{25} >100 ISO 4401:1999 class 19/17/14)
- The filters are always supplied with a by-pass valve.
- The filter elements are available in the standard version (S) or in the longlasting version (L) is able to hold high quantities of contamination material. For all filter elements the collapsing differential pressure is 20 bar.
- All the FPM filters are designed to incorporate a visual-differential or a visualelectric clogging indicator to be ordered separately (see paragraph 5).


PERFORMANCES

Filter code	BSP port dimensions	Mass [Kg]		Rated flow (indicative) [l/min]					
		type S	type L	F05S	F05L	F10S	F10L	F25S	F25L
FPM-TB012	1/2"			25	40	35	50	45	60
FPM-TB034	3/4"	1,5	2,0	35	50	50	65	65	80
FPM-TB100	1"			40	60	60	85	85	100

NOTE 1: the flow rates stated in the table correspond to a 0.8 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C. As for a different viscosity range, see NOTE 2 - par. 2.2.


210 Maximum operating pressure bar Collapsing differential pressure of the filter bar 20 element Differential pressure for the opening of the 6 bar by-pass valve (±10 %) Ambient temperature range °C -25 / +50 °C -25 / +110 Fluid temperature range cSt 10 ÷ 400 Fluid viscosity range

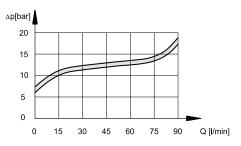


2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

2.1 - Pressure drops through the filter body

2.2 - Pressure drops through FPME filter element

NOTE 2: The filter size has to be selected so that with the nominal flow rate the pressure drop is lower than 0.8 bar.


The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element. As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:

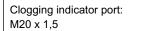
total Δpl value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)

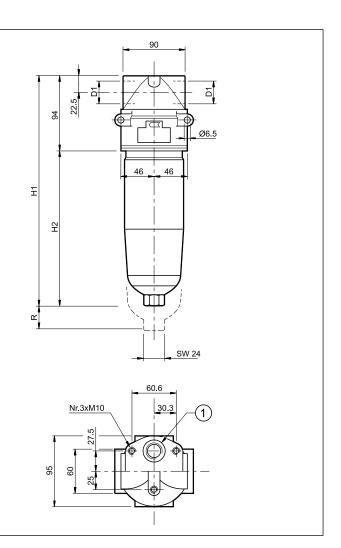
real Δp value of the filter element = value obtainable through the diagrams in paragraph 2.2

Such ratio is valid for a viscosity value up to 200 cSt. For a higher viscosity please consult our technical department.

2.3 - Pressure drops through by-pass valve

3 - HYDRAULIC FLUIDS

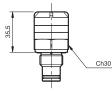

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.


The fluid must be preserved in its physical and chemical characteristics.

4 - OVERALL AND MOUNTING DIMENSIONS

dimensions in mm				
Filter code	D1	H1	H2	R*
FPM-TB012-*S	1/2"	205	111	100
FPM-TB034-*S	3/4"	205	111	100
FPM-TB100-*S	1"	205	111	100
FPM-TB012-*L	1/2"	298	197	100
FPM-TB034-*L	3/4"	298	197	100
FPM-TB100-*L	1"	298	197	100

R* = Filter element removal space

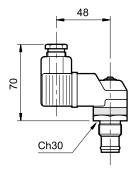


1

5 - CLOGGING INDICATORS

The filters are all designed to incorporate clogging indicators, which have to be ordered separately

5.1 - Visual indicator for medium pressure delivery filters Identification code: VPM/10

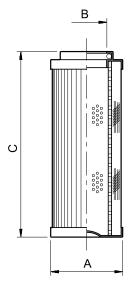


This indicator measures the differential pressure between the filter input and output.

The indicator is supplied with coloured bands, which informs you about the clogging condition of the filter element:

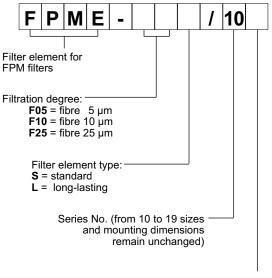
WHITE: efficient filter element $\Delta p < 5$ bar (± 10%) RED: the filter element has to be replaced p >5 bar (± 10%)

5.2 - Electric-visual indicator for delivery filters Identification code: EPM/10


This indicator, apart from giving a visual indication, for example the VPM model, operates by switching an electric contact when the filter element has reached the clogging limit.

The contact can be wired in an open or closed condition (see the hydraulic symbol).

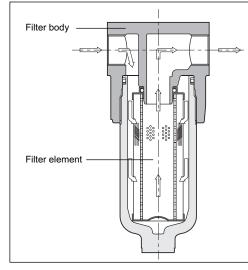
TECHNICAL SPECIFICATIONS


Differential operating pressure	bar	5
AC power supply		
Max. operating voltage	VAC	250 50/60 Hz
Max. load on the contacts (inductive or resistive)	А	5
DC power supply		
Max. operating voltage	VDC	125
Max. load on the contacts (with V at 30-50-75-125 VDC) resistive inductive	A	2 - 0,5 - 0,25 - 0,2 2 - 0,5 - 0,25 - 0,03
Electric connector		DIN 43650
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65	

6 - FILTER ELEMENTS

filter element code	ØA	ØB	С	Average filtering surface [cm ²]
FPME - *S	52	23,5	115	975
FPME - *L	52	23,5	210	1830

FILTER ELEMENT IDENTIFICATION CODE


N = NBR seals for mineral oils (standard) V = FPM seals for special fluids (upon request)

95 210/112 ED

OPERATING PRINCIPLE

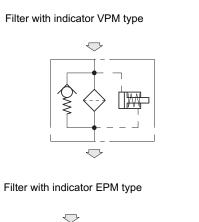
- FPH filters are designed to be line-mounted with BSP threaded ports for hydraulic connections. Threaded holes are machined on the head for possible filter bracket fixing.
- The replacement of the filter element can be easily carried out by using a normal hexagon spanner to unscrew the bowl of the filter, which has a suitably shaped end.
- FPH filters are designed to be installed on pressure lines up to 420 bar; the filter elements are made of high efficiency filtering materials and are capable of holding high quantities of contamination particles. They are available with three different filtration degrees:

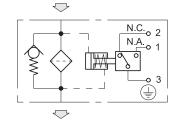
H05 = 5 μ m: absolute (β_5 > 100 - ISO 4406:1999 class 17/15/12) cartridge with a collapsing differential pressure = 210 bar to be used without a by-pass valve.

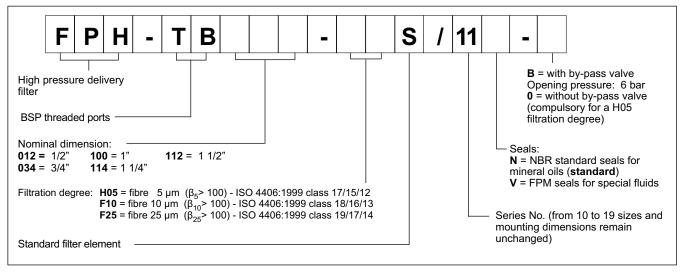
F10 = 10 μ m: absolute (β_{10} > 100 - ISO 4406:1999 class 18/16/13)

- F25 = 25 μ m: absolute (β_{25} > 100 ISO 4406:1999 class 19/17/14)
- Those filters with a F10 and F25 filtration degree are supplied with a by-pass valve and have a cartridge with a collapsing differential pressure = 20 bar.

 All the FPH filters are designed to incorporate a visual-differential or a visual-electric clogging indicator to be ordered separately (see par. 5).

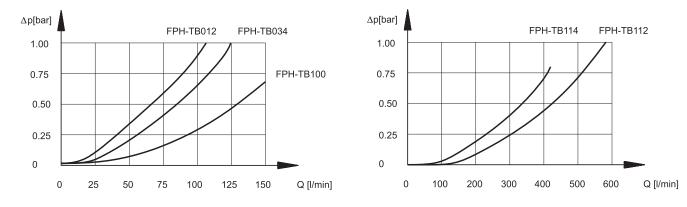

PERFORMANCES

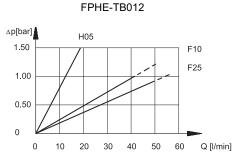

Filter code	BSP port dimensions	Mass [Kg]	Rated flow (indicative) [l/min]		
			H05 F10 F25		
FPH-TB012	1/2"	4.4	10	27	33
FPH-TB034	3/4"	5.2	19	42	65
FPH-TB100	1"	8.2	40	95	105
FPH-TB114	1 ¼"	14	88	190	230
FPH-TB112	1 1⁄2"	17.2	120	260	320

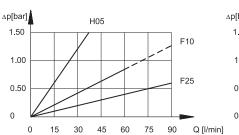

NOTE 1: The flow rates stated in the table correspond to a 0.8 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C.

As for a different viscosity range, see NOTE 2 - par. 2.2.

Maximum operating pressure	bar	420
Collapsing differential pressure of the filter element: H05 F-10-F25	bar	210 20
Differential pressure for the opening of the by-pass valve (±10 %)	bar	6
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400

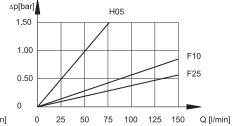


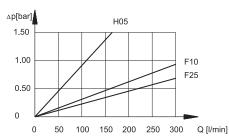


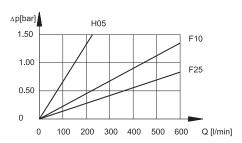

2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

2.1 - Pressure drops through the filter body

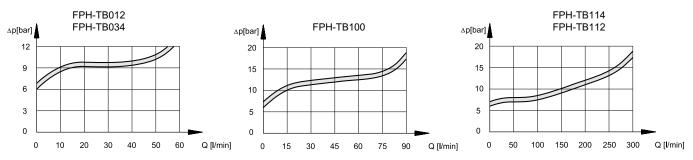
2.2 - Pressure drops through the FPHE filter element




FPHE-TB112


FPHE-TB034

NOTE 2: The filter size has to be selected so that with the nominal flow rate the pressure drop is lower than 0.8 bar.

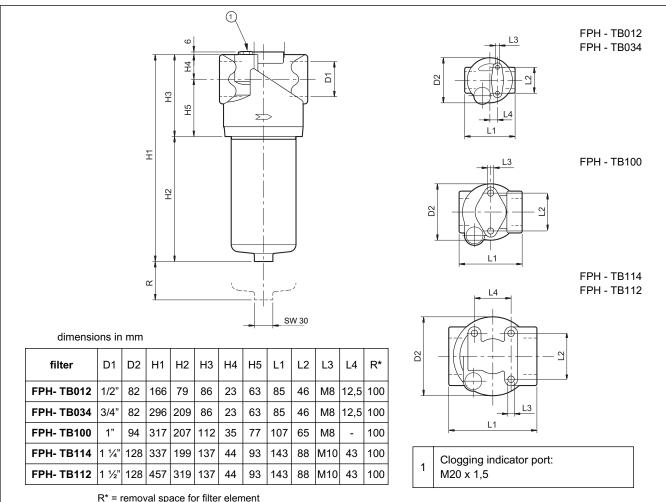

The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element. As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:

total Δpl value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)

real Δp value of the filter element = value obtainable through the diagrams in par. 2.2

Such ratio is valid for a viscosity value up to 200 cSt. For a higher viscosity please consult our technical department.

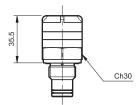
2.3 - Pressure drops through the by-pass valve



3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

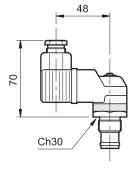
The fluid must be preserved in its physical and chemical characteristics.


4 - OVERALL AND MOUNTING DIMENSIONS

5 - CLOGGING INDICATORS

The filters are all designed to incorporate clogging indicators, which have to be ordered separately.

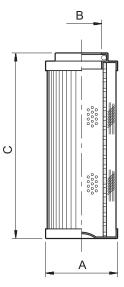
5.1 - Visual indicator for delivery filters Identification code: VPM/10



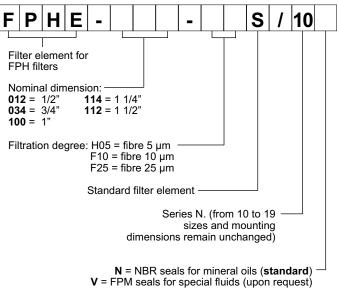
This indicator measures the differential pressure between the filter input and output.

The indicator is supplied with coloured bands, which informs you about the clogging condition of the filter element:

WHITE: efficient filter element $\Delta p < 5$ bar (± 10%) RED: the filter element has to be replaced $\Delta p > 5$ bar (± 10%)


5.2 - Electric-visual indicator for delivery filters Identification code: EPM/10

This indicator, apart from giving a visual indication, for example the VPM model, operates by switching an electric contact when the filter element has reached the clogging limit.


The contact can be wired in an open or closed condition (see the hydraulic symbol).

6 - FILTER ELEMENTS

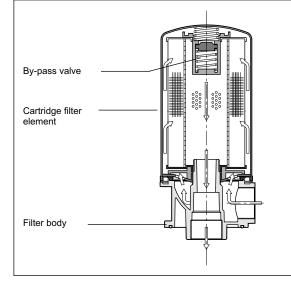
filter element code	ØA	ØB	с	Average filtering surface [cm ²]	
				H05	F12/F25
FPHE - 012	45	25	85	340	355
FPHE - 034	45	25	211	915	935
FPHE - 100	52	23,5	210	1785	1830
FPHE - 114	78	42,5	210	2695	3695
FPHE - 112	78	42,5	330	4325	5025

FILTER ELEMENT IDENTIFICATION CODE

TECHNICAL SPECIFICATIONS

Differential operating pressure	bar	5	
AC power supply			
Max. operating voltage	VAC	250 50/60 Hz	
Max. load on the contacts (inductive or resistive)	А	1	
DC power supply			
Max. operating voltage	VDC	125	
Max. load on the contacts (with V at 30-50-75-125 VDC) resistive inductive	A	2 - 0,5 - 0,25 - 0,2 2 - 0,5 - 0,25 - 0,03	
Electric connector		DIN 43650	
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65		

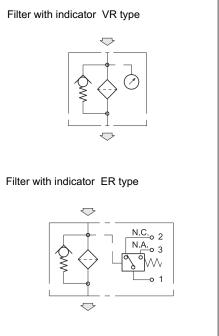
95 160/112 ED

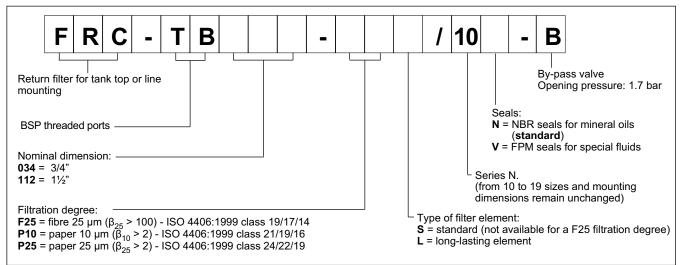


FRC RETURN LINE FILTER FOR TANK TOP OR LINE MOUNTING SERIES 10

p max 7 barQ max (see table of performances)

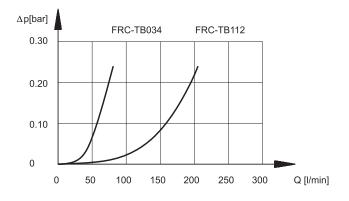
OPERATING PRINCIPLE

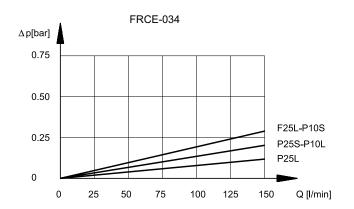

- FRC filters can be mounted both on the tank cover by using a 4-hole flange fixing system with a direct bottom discharge, or on the return line.
- The filter element with a screw on cartridge allows easy and practical replacement; a suitable membrane inside the cartridge prevents the residual oil from coming out.
- The filter element is made of high efficiency filtering materials and is able to accumulate high quantities of contamination material. It is available with three different filtration degrees:
 - F25 = 25 μ m: absolute (β_{25} > 100) ISO 4406:1999 class 19/17/14
 - P10 = 10 $\mu m:$ nominal (β_{10} > 2) $\,$ ISO 4406:1999 class 21/19/16 $\,$
 - P25 = 25 μ m: nominal (β_{25} > 2) ISO 4406:1999 class 24/22/19
- FRC filters are always supplied with a by-pass valve.
- All the FRC filters are designed to incorporate an electric or visual clogging indicator, to be ordered separately (see paragraph 5).

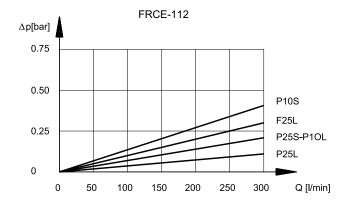

PERFORMANCES

Filter code	BSP port dimensions	Mass [kg]					
			F25L	P10S	P10L	P25S	P25L
FRC-TB034	3/4"	1.6	65	65	70	70	75
FRC-TB112	1 1⁄2"	2.2	180	150	200	200	200

NOTE 1: the flow rates stated in the table correspond to a 0.5 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C. As for a different viscosity range, see NOTE 2 - par. 2.2.


	-	
Maximum pressure	bar	7
Collapsing differential pressure of the filter element	bar	3.0
Differential pressure for the opening of the by-pass valve (±10 %)	bar	1,7
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400




2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

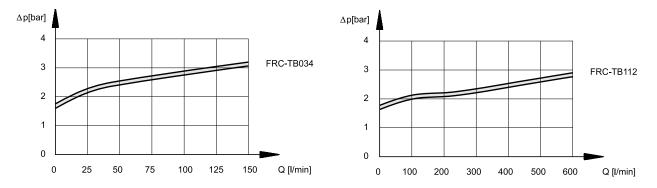
2.1 - Pressure drops through the filter body

2.2 - Pressure drops through the FRCE filter element

NOTE 2: The filter size has to be selected so that with the nominal flow rate the pressure drop is lower than 0.5 bar.

The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element.

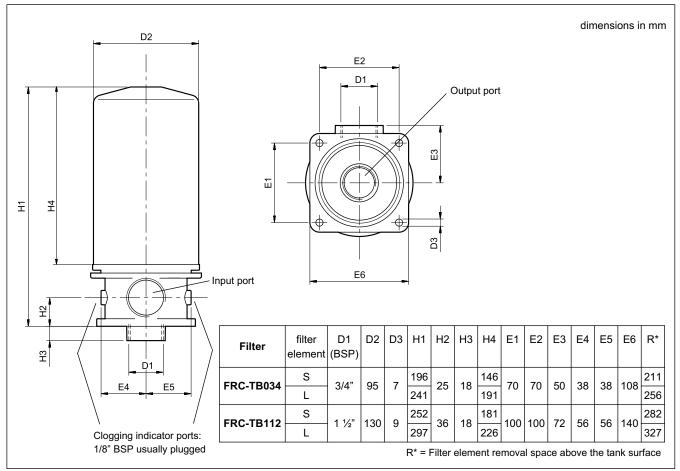
As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:


total Δpl value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)

real Δp value of the filter element = value obtainable through the diagrams in paragraph 2.2

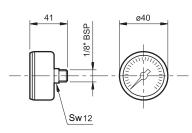
Such ratio is valid for a viscosity value up to 200 cSt.

For a higher viscosity please consult our technical department.


2.3 - Pressure drops through the by-pass valve

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

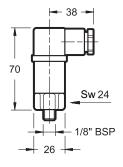

4 - OVERALL AND MOUNTING DIMENSIONS

5 - CLOGGING INDICATORS

The filters are designed to incorporate clogging indicators, which have to be ordered separately.

5.1 - Visual indicator for return filters Identification code: VR/10

This indicator is a pressure gauge sensitive to the filter input pressure.

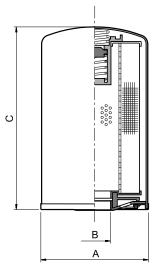

The indicator is supplied with a 0 ÷ 6 bar graduated scale and with a two-colour reading scale, which

informs you about the clogging condition of the filter element:

GREEN: efficient filter element (0 ÷ 1.7 bar)

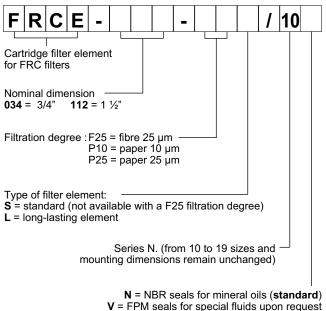
RED: the filter element has to be replaced (> 1.7 bar)

5.2 - Electric indicator for return filters Identification code: ER/11


This indicator is a pressure switch sensitive to the filter input pressure, which switches an electric contact when the filter element has reached the clogging limit.

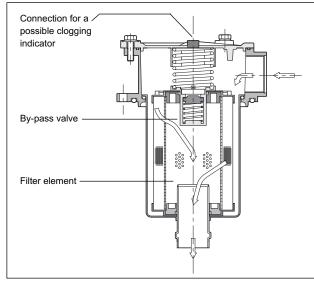
The contact can be wired in an open or closed condition (see the hydraulic symbol).

TECHNICAL SPECIFICATIONS


Operating pressure	bar	1,5	
AC power supply			
Max. operating voltage	VAC	250 50/60 Hz	
Max. load on the contacts			
(inductive or resistive)	А		
with V at 125 VAC		3	
with V at 250 VAC		0,5	
DC power supply			
Max. operating voltage	VDC	30	
Max. load on the contacts			
resistive	A	3	
inductive		1	
Electric connector	DIN 43650		
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65		
Atex classification	3	GD EEx e T6	

Filter element code	ØA	ØВ	С	Average filtering surface [cm ²]
FRCE - 034 -P*S	96,5	3/4" BSP	146	3305
FRCE - 034 -P*L	96,5	3/4" BSP	191	4745
FRCE - 034 -F25L	96,5	3/4" BSP	191	3630
FRCE - 112 -P*S	129	1 ¼" BSP	181	5560
FRCE - 112 -P*L	129	1 ¼" BSP	226	7360
FRCE - 112 -F25L	129	1 ¼" BSP	226	5890

FILTER ELEMENT IDENTIFICATION CODE

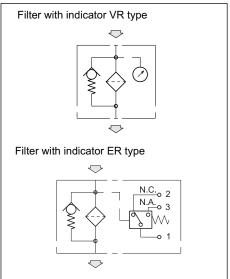


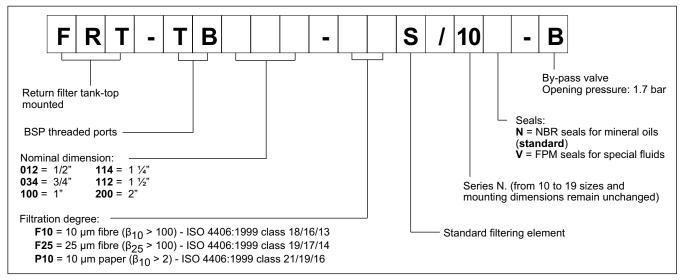
95 150/112 ED

OPERATING PRINCIPLE

FRT RETURN FILTER FOR FLANGE MOUNTING ON THE TANK SERIES 10

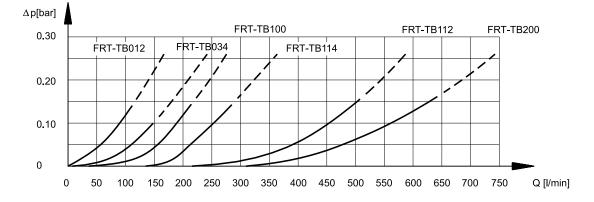
p max 3 barQ max (see performance table)

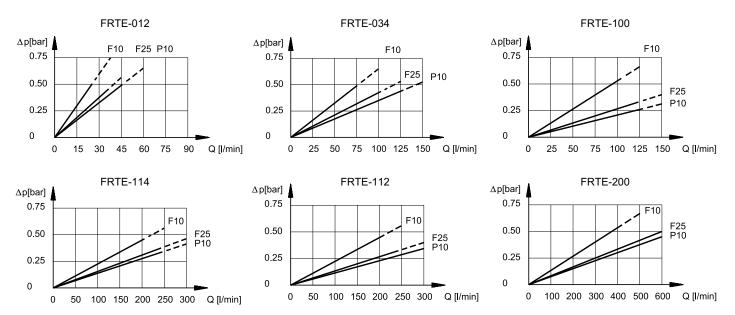

- FRT filters are designed to be flange-mounted on the tank cover; the BSP threaded port for the input connection is positioned on the filter head and is therefore very accessible.
- The inspection cover fixed with three or four screws allows easy maintenance; the filter element is supplied with a screw, which makes its removal together with the container easier. In this way, by replacing the filter element, it is possible to clean the contamination present in the bowl of the filter.
- The filter element is made of high efficiency filtering materials and is able to hold high quantities of contamination material. It is available with three different filtration degrees:
 - $\begin{array}{l} \mbox{F10} = 10 \ \mbox{\mu}m \ \mbox{absolute} \ (\beta_{10} > 100) ISO \ 4406:1999 \ \mbox{class} \ 18/16/13 \\ \mbox{F25} = 25 \ \mbox{\mu}m \ \mbox{absolute} \ (\beta_{25} > 100) ISO \ 4406:1999 \ \mbox{class} \ 19/17/14 \\ \mbox{P10} = 10 \ \mbox{\mu}m \ \mbox{nominal} \ (\beta_{10} > 2) ISO \ 4406:1999 \ \mbox{class} \ 21/19/16 \end{array}$
- FRT filters are always supplied with a by-pass valve.
- All the FRT filters are designed to incorporate an electric or visual clogging indicator, to be ordered separately (see par. 5).


PERFORMANCES

Filter code	BSP port dimensions	Mass [kg]	Rated flow (indicative) [l/min]		
			F10	F25	P10
FRT-TB012	1/2"	0,45	18	25	30
FRT-TB034	3/4"	0,95	50	70	85
FRT-TB100	1"	1,1	65	110	130
FRT-TB114	1 ¼"	2,1	150	190	210
FRT-TB112	1 1⁄2"	3,1	160	250	290
FRT-TB200	2"	4,1	280	400	430

Maximum pressure	bar	3
Collapsing differential pressure of the filter element	bar	3
Differential pressure for the opening of the by-pass valve (±10 %)	bar	1,7
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400


NOTE: the flow rates stated in the table correspond to a 0.5 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C. As for a different viscosity range, see **NOTE 2** par. 2.2.

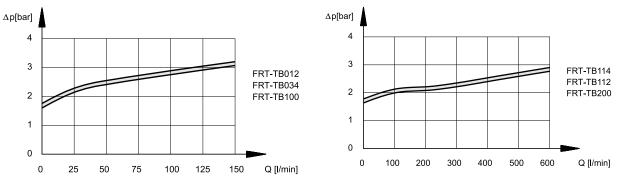


2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)

2.1 - Pressure drops through the filter body

2.2 - Pressure drops through the FRTE filtering element

NOTE 2: the filter size has to be calculated so that with the nominal flow rate the pressure drop is lower than 0.5 bar.

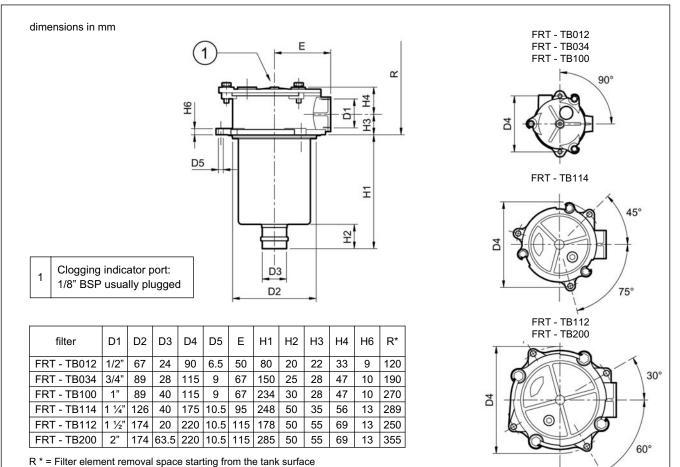

The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element. As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:

total Δp value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)

real Δp value of the filter element = value obtainable through the diagrams in par. 2.2

Such ratio is valid for a viscosity value up to 200 cSt. For a higher viscosity please consult our technical department.

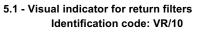
2.3 - Pressure drops through the by-pass valve



3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.

The fluid must be preserved in its physical and chemical characteristics.


4 - OVERALL AND MOUNTING DIMENSIONS

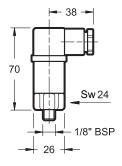


3

5 - CLOGGING INDICATORS

The filters are designed to incorporate clogging indicators, which have to be ordered separately.

This indicator is a pressure gauge sensitive to the filter input pressure.

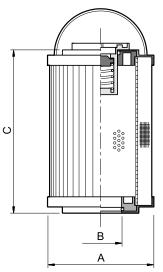

The indicator is supplied with a 0 ÷ 6 bar graduated scale and with a two-colour reading scale, which

informs you about the clogging condition of the filter element:

GREEN: efficient filter element (0 ÷ 1.7 bar)

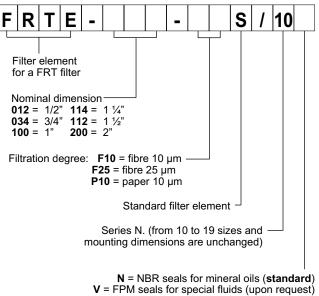
RED: the filter element has to be replaced (> 1.7 bar)

5.2 - Electric indicator for return filters Identification code: ER/11


This indicator is a pressure switch sensitive to the filter input pressure, which switches an electrical contact when the filter element has reached the clogging limit.

The contact can be wired in an open or closed condition (see the hydraulic symbol).

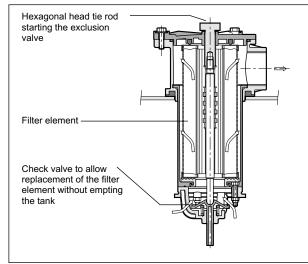
TECHNICAL SPECIFICATIONS


Operating pressure	bar	1,5				
AC power supply	AC power supply					
Max. operating voltage	VAC	250 50/60 Hz				
Max. load on the contacts						
(inductive or resistive)	А					
with V at 125 VAC		3				
with V at 250 VAC		0,5				
DC power supply						
Max. operating voltage	VDC	30				
Max. load on the contacts						
resistive	А	3				
inductive		1				
Electric connector	DIN 43650					
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65					
Atex classification	3	GD EEx e T6				

Filter element code	ØA	ØB	с	Average filtering surface [cm ²]	
				P10	F12/F25
FRTE - 012	52	24	70	310	380
FRTE - 034	70	28	130	1000	1600
FRTE - 100	70	40	210	1660	2670
FRTE - 114	99	40	211	3800	4280
FRTE - 112	130	51	140	4140	4360
FRTE - 200	130	63	251	7930	8350

FILTER ELEMENT IDENTIFICATION CODE

95 110/112 ED



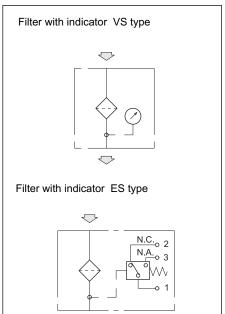
FST SUCTION FILTER WITH SEALED FLANGE MOUNTING SERIES 10

Q max (see performances table)

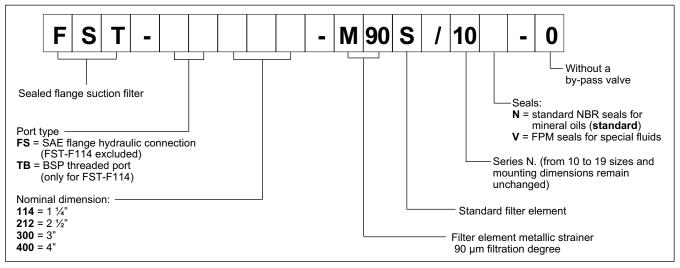
OPERATING PRINCIPLE

- FST filters are designed for sealed flange mounting. They are assembled directly on to the hydraulic power unit.
- They are aimed at protecting the pump from any possible gross contamination present inside the tank.
- The filter element is made of a metallic strainer with a 90 µm filtration degree, which grants a good pump protection without compromising the correct fluid flow. It can be easily replaced without empting the tank. See paragraph 6 for its identification code.
- The filters are designed with a SAE flange port with the exception of the smallest size, which uses a BSP threaded port.
- All the FST filters are designed to incorporate an electric or visual clogging indicator, to be ordered separately (see paragraph 5).

PERFORMANCES

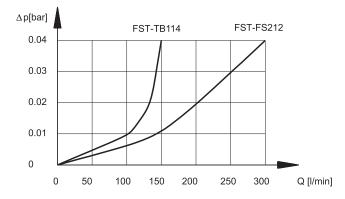

Filter code	port dimensions		Mass [kg]	Rated flow (indicative) [l/min]	Rated filtration degree [µm]
	BSP	SAE flange			
FST-TB114	1 ¼"	-	1,6	70	
FST-FS212	-	2 1⁄2"	3,0	100	90
FST-FS300	-	3"	13,0	200	90
FST-FS400	-	4"	16,0	300	

NOTE 1: the flow rates stated in the table correspond to a 0.02 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50°C.

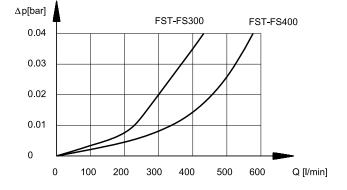

As for a different viscosity range, see NOTE 2 - paragraph 2.2.

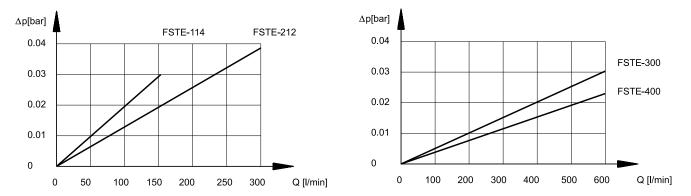
Collapsing differential pressure of the filter element	bar	1,0
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400

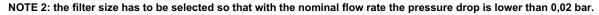
HYDRAULIC SYMBOL



 \bigtriangledown




2 - CHARACTERISTIC CURVES (values measured with viscosity of 36 cSt at 50°C)


2.1 - Pressure drops through the filter body

2.2 - Pressure drops through the FSTE filter element

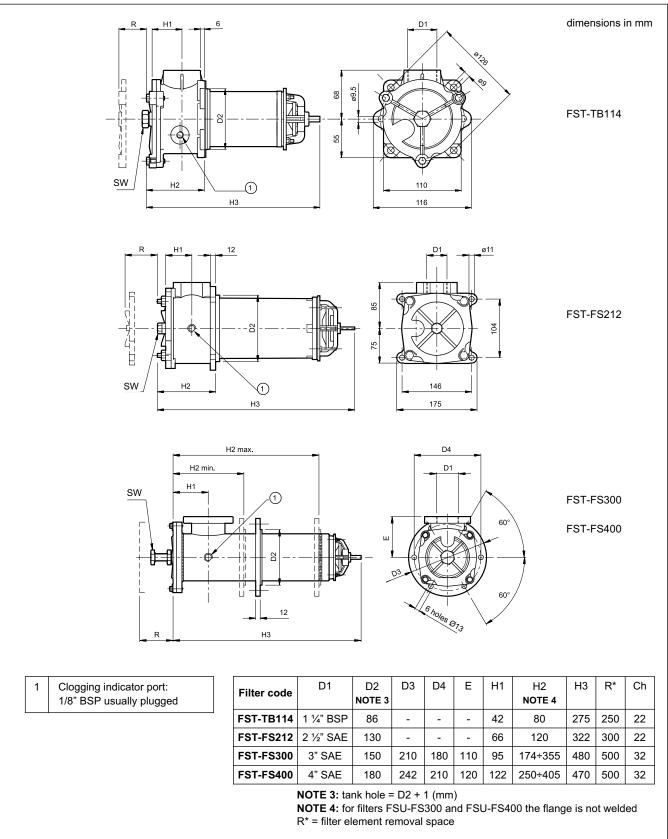
The total pressure drop through the filter is given by adding the body pressure drop values to those of the filter element.

As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the filter total pressure drop has to be changed according to the following ratio:

total Δpl value = body Δp value + (real Δp value of the filter element x real viscosity value (cSt) / 36)

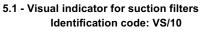
real Δp value of the filter element = value obtainable through the diagrams in paragraph 2.2

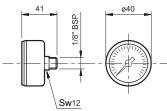
Such ratio is valid for a viscosity value up to 200 cSt.


For a higher viscosity please consult our technical department.

3 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics.


The fluid must be preserved in its physical and chemical characteristics.

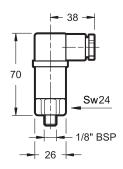

4 - OVERALL AND MOUNTING DIMENSIONS

5 - CLOGGING INDICATORS

The filters are designed to incorporate clogging indicators, which have to be ordered separately.

This indicator is a vacuum gauge sensitive to the suction depression.

The indicator is supplied with a 0 + -1 relative bar graduated scale and with a three-colour reading

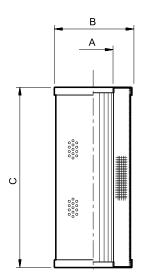

scale, which informs you about the clogging condition of the filter element:

GREEN: efficient filter element (0 / -0.15 bar)

YELLOW: the filter element is wearing out (-0.15 / -0.25 bar)

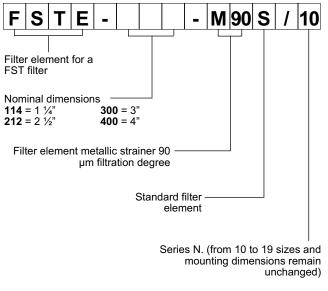
RED: the filter element has to be replaced (> -0.25 bar)

5.2 - Electric indicator for suction filters Identification code: ES/10



This indicator is a vacuum gauge sensitive to the suction depression, which operates by switching an electric contact when the filter element has reached the clogging limit.

The contact can be wired in an open or closed condition (see the hydraulic symbol).

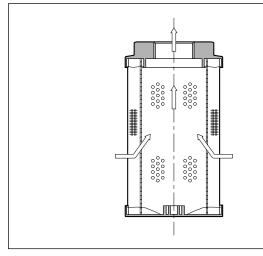

TECHNICAL SPECIFICATIONS

Operating pressure	bar	- 0,2				
AC power supply						
Max. operating voltage	VAC	250 50/60 Hz				
Max. load on the contacts						
(inductive or resistive)	A					
with V at 125 VAC	A	3				
with V at 250 VAC		0,5				
DC power supply						
Max. operating voltage	VDC	30				
Max. load on the contacts						
resistive	A 3					
inductive		1				
Electric connector	DIN 43650					
Class of protection according to CEI EN 60529 (atmospheric agents)	IP65					
Atex classification	3	GD EEx e T6				

Filter element code	ØA	ØB	с	Average filter surface [cm²]
FSTE - 114	29,5	70	163	1600
FSTE - 212	65	99	198	1845
FSTE - 300	65	99	375	3545
FSTE - 400	93	136	375	5065

FILTER ELEMENT IDENTIFICATION CODE

6 - FILTER ELEMENTS



FSI SUCTION FILTER FOR SUBMERGED MOUNTING SERIES 10

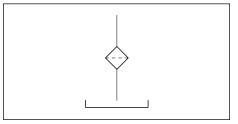
Q max (see performance ratings table)

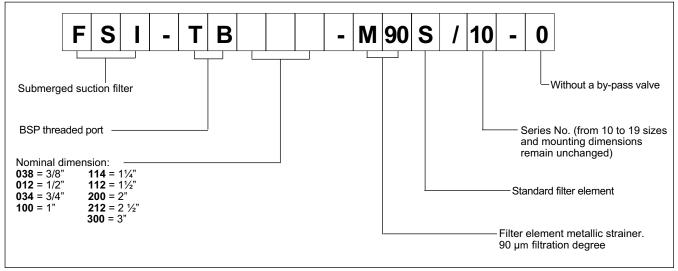
OPERATING PRINCIPLE

TECHNICAL SPECIFICATIONS

Filter code	BSP port dimensions	Rated flow [I/min] (NOTE 1)	Rated filtration degree [µm]
FSI-TB038	3/8"	9	
FSI-TB012	1/2"	14	
FSI-TB034	3/4"	25	
FSI-TB100	1"	45	
FSI-TB114	1 1⁄4"	75	90
FSI-TB112	1 1⁄2"	100	
FSI-TB200	2 "	160	
FSI-TB212	2 ½"	250	
FSI-TB300	3"	350	

Collapsing differential pressure of the filter element	bar	1.0
Ambient temperature range	°C	-25 / +50
Fluid temperature range	°C	-25 / +110
Fluid viscosity range	cSt	10 ÷ 400

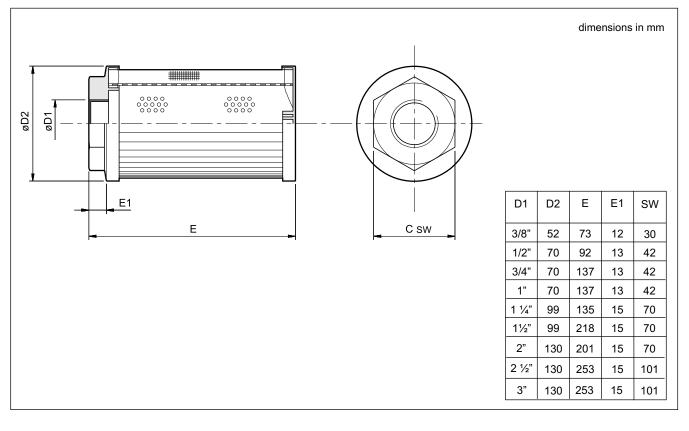

- FSI filters are filter elements which function being completely submerged in the tank. They are installed directly at the end of the pump suction line.
- They are aimed at protecting the pump from any possible gross contamination present inside the tank.
- The filter element is a metallic strainer with a 90 µm filtration degree, which grants a good pump protection without compromising the correct fluid supply.
- The filters are designed with a threaded BSP connection, available in the sizes from 3/8" to 3". They are supplied with a hexagonal shank, which allows the filter element to be connected by spanner to the pump suction line.


NOTE 1: The flow rates stated in the table correspond to a 0.02 bar pressure drop measured with mineral oil of viscosity 36 cSt at 50° C

As for fluids whose viscosity degree at a specific operating pressure is different from 36 cSt, the real pressure drop has to be changed according to the following ratio:

real
$$\Delta p$$
 value = 0.02 . $\frac{\text{real } Q}{\text{table } Q}$. $\frac{\text{real viscosity degree (cSt)}}{36}$

The filter size has to be selected so that with the nominal flow rate the pressure drop is lower than 0.02 bar.



2 - HYDRAULIC FLUIDS

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

3 - OVERALL AND MOUNTING DIMENSIONS

DUPLOMATIC OLEODINAMICA S.p.A.

20015 PARABIAGO (MI) • Via M. Re Depaolini 24 Tel. +39 0331.895.111 Fax +39 0331.895.339 www.duplomatic.com • e-mail: sales.exp@duplomatic.com

PTH PRESSURE TRANSMITTERS

p nom 40 - 100 - 250 - 400 bar

DESCRIPTION

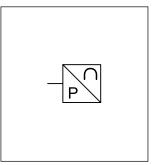
This series of pressure transmitters has been designed in order to be used for the main industrial applications and on moving machines.

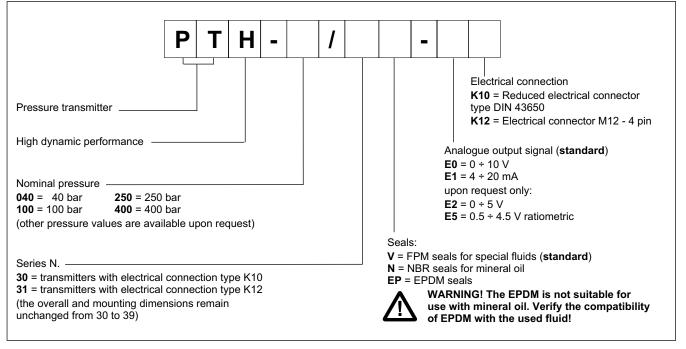
The main feature of this transmitter is to ensure its functioning also in harsh environements, especially for what concerns the fluid temperature range which can go from a minimum of - 40 °C up to a maximum of + 120 °C

The basis of this transmitter is the strain-gauge, which is powered by an electric circuit developed according to the SMT technology which ensures a high reliability and maximum resistance to vibrations and mechanical stress.

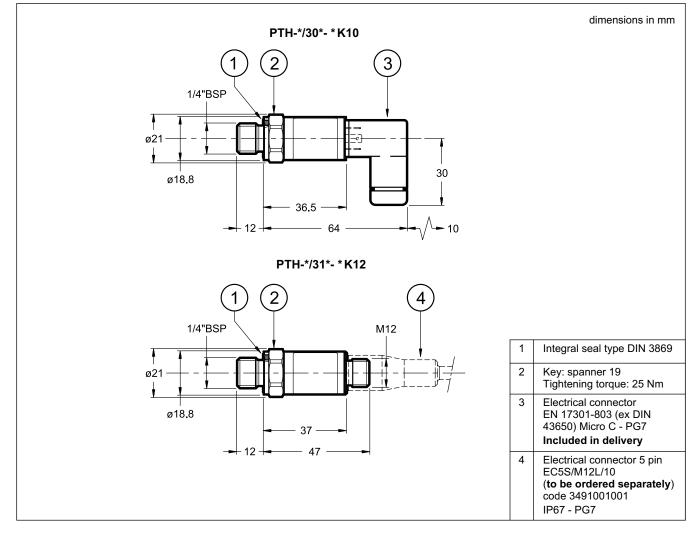
Every component into contact with the fluid is made of stainless steel and the pressure sensor is completely fluid-proof.

It's available with current output signal $4 \div 20$ mA or with voltage output signal $0 \div 10$ V. Versions also available upon request are $0 \div 5$ V and $0.5 \div 4.5$ V, ratiometric. They all are reverse polarity protected.


The protection class of the electrical connection for the version with DIN connector is IP65, while the version with the M12 connector has a protection class IP67.


These transmitters are available in 4 different pressure ranges, from 40 to 400 bar.

TECHNICAL SPECIFICATIONS


Nominal pressure P _N	bar	40	100	250	400
Overpressure - max working pressure	x P _N	x 3	x 3	x 3	x 2.5
Burst pressure	x P _N	x 7	x 5	x 4	x 5

Accuracy typical at 25 °C		% P _N	± 0,5
Output signal :	Output signal : current voltage		4 ÷ 20 0 ÷ 10, 0 ÷ 5, 0.5 ÷ 4.5
Sensor temperature range:		°C	-40 / +120
Ambient and fluid temperature range: sealing in FPM (standard) NBR EPDM		°C	-20 / +120 -25 / +100 -40 / +125
Rise time (10%90% of P_N)		ms	1
Hydraulic connection			1/4" BSP with seal
Housing and pressure connection			AISI 304
Mass		g	50

2 - OVERALL AND MOUNTING DIMENSIONS

3 - TECHNICAL CHARACTERISTICS

Electrical data

		E0	E1	E2	E5
Output signal		0 ÷ 10 V	4 ÷ 20 mA	0 ÷ 5 V	0.5 ÷ 4.5 V ratiometric
Supply voltage	V CC	24 (15 ÷ 32)	24 (9 ÷ 32)	24 (9 ÷ 32)	5 (4.75 ÷ 5.25)
Max current consumption	mA	≤ 15	-	≤ 20	≤ 10
Load resistance	kΩ	≥ 5.0	see par. 4.2	≥ 5.0	≥ 5.0

Accuracy

Accuracy (typical at 25 °C)	% P _N	± 0.5
TEB Total error band (-25+85 °C)	% P _N	± 1.75
NLH Non linearity and hysteresis (at 25 °C)	% P _N	± 0.2
TC Temperature coefficient	% P _N	± 0.03
Stability after 1 million cycles	% P _N	± 0.2

Environmental conditions

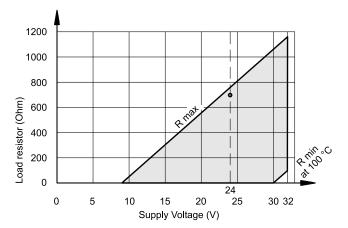
Electromagnetic compatibility (EMC): according to 2014/30/EU		Immunity 61000-6-2 Emissions 61000-6-4
Vibrations		50 G / 11 ms
Class protection according to EN 60529 with connector proprerly installed.	K10 K12	IP65 IP67

4 - TRANSMITTERS SUPPLY

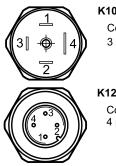
4.1 - Versions in voltage (E0, E2, E5 ratiometric)

These transmitters are equipped with voltage stabilizer which supplies the electric circuit with constant voltage, independently from power supply voltage.

We recommend a stabilized power supply voltage, within proper ranges as in table at par. 3 .


4.2 - Version in current 4 ÷ 20 mA (E1)

The transmitter works properly within an operating area (see diagram) that depends on both the voltage supply value and the external load resistance used to convert the signal.


Is recommended to choose values close to the limit Rmax, in order to have a wide signal easier to read.

We suggest supply voltage of 24 VDC and a load resistance of 700 \mbox{Ohm}

min./max resistor vs. supply voltage E1 version with Pmax = 100%

5 - ELECTRIC CONNECTIONS

K10 Connection DIN 43650 reduced 3 pin + GND

WARNING! Check that the connection cables are suitable for the temperature range intended for use of the device.

4 pin

Connection M12x1

6 - WIRING DIAGRAMS - K10 CONNECTION

voltage output - 3 wires + GND	Version		1	current output - 2 wires + GND Vers	s.
	E0	E2	E5	E1	
$\begin{array}{c c} & & \text{shield} \\ \hline & & \text{H} & \text{U}_{s} - (\text{Supply}) - 1 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ \hline & & \text{H} \\ \hline & & \text{H} \\ \hline & & \text{H} & \text{H}$	24 V 0÷10 V 0 V GND	24 V 0÷5 V 0 V GND	5 V 0.5÷4.5 V 0 V GND	$\begin{array}{c c} & & & \text{shield} \\ \hline & & & \text{shield} \\ \hline & & & \text{the shield} \\ \hline & & &$	mA

WARNING! The pin assignment for the transducer PTH - */30*-E0K10 (DIN 43650 connection) differs from that of the previous series!

7 - WIRING DIAGRAMS - K12 CONNECTION

voltage output - 3 wires + GND	Version		I	current output - 2 wires + GND Vers.
	E0	E2	E5	E1
$\begin{array}{c c} & & \text{shield} \\ \hline & & \text{H} & \text{U}_{s} - (\text{Supply}) & 1 \\ \hline & & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & 2 \\ \hline & & \text{H} & \text{H} & 2 \\ \hline & & \text{H} &$	24 V 0÷10 V 0 V GND	24 V 0÷5 V 0 V GND	5 V 0.5÷4.5 V 0 V GND	$\begin{array}{c c} & & \text{shield} \\ \hline & & \text{shield} \\ \hline & & \text{H} \\ \hline$

WARNING! The pin assignment for the transducer PTH - */31*-E*K12 (M12 - 4 pin connection) differs from that of the previous series!

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (433)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Набережные Челны (8552)20-53-4 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (805)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

https://duplomatic.nt-rt.ru/ || dcw@nt-rt.ru

Россия (495)268-04-70